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gives surprisingly large reflections of the beam, because the disk becomes prismatic 
in section ; fortunately, these deflections occur in a radial direction and can therefore 
be distinguished from the aberration effect, which is tangential. Moreover, they 
are independent of the sense of rotation, as are also any effects due to photoelastic 
polarization by the medium under centrifugal forces. 

Figure 1 shows a record of the lateral position of the emergent light beam during 
a run with the disk rotational speed varying from 0 to + 1800 to 0 to - 1800 rpm. The 
broadening effect at low speeds is due to causes (i) to (iii) above; in addition the effect 
of a slight change of axis is apparent, also some zero drift; but, despite these 
defects, a general displacement proportional to and in the same sense as the trans- 
verse velocity of the disk is present. It can be seen on every run designed to detect 
a tangential displacement despite intentional changes in items such as the bearings. 
As for magnitude, with a glass disk of 19.1 mm thickness and refractive index 1.51 
with white light passing twice through the disk at 110 mm radius from the axis of 
rotation, the displacement when the speed is increased from 600 to 1800 rpm should 
be about 1.49 x mm from Fresnel's formula; the preliminary experiment gives 
1.50 x mm k 10%. 

I am indebted to Dr J. C. S. Richards for the electronics associated with the 
alignment and rotation measurements. 
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Numerical calculation of the S-state energy eigenvalues 
for a local potential 

Abstract. A numerical method for calculating the S-state energy eigenvalues 
for a local potential is given. The method makes use of a first-order differen- 
tial equation which is easily derived from the Schrodinger equation. 

One of the important problems in quantum mechanics is the calculation of the 
energy eigenvalues for a particular potential in the Schrodinger equation, that is, 
given the potential V between two particles we wish to solve the equation 

(T+V)Y  = E Y  (1) 
where T is the kinetic energy, for the negative energy (or energies), E = - E B .  
For most potentials an algebraic solution of equation (1) cannot be found and numeri- 
cal methods have to be used, In  this letter, a simple method to calculate the S-state 
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energy eigenvalues is outlined. This method is ideally suited for the electronic 
computer. In  addition, the method can be used to determine the total number of 
bound S-states for a given potential, provided that this number is finite. 

The  Schrodinger equation for the S-state and negative energies is 

d2u(r) 
dr2 

-- V(r) U ( Y )  = p%(r) 

u(0) = 0 (2) 

where the potential V(Y) is measured in units (length)-2 and the binding energy 
(p  = pB) is h2pB2/2m, m being the reduced mass. Beyond the range R of the potential 
the solution of equation (2) for p = pB has the form 

The  logarithmic derivative of the wavefunction U ( Y )  is y(r )  = u-l  duldr. I t  is a 
simple matter to show that it satisfies the differential equation 

dY - = p2-y2+ V ( Y ) .  
dr (3) 

The boundary condition for the integration of equation (3)) the Riccati equation, is 
y(0) = 00. At the energy of a bound state, y( 00) = - pB. On account of the boundary 
condition, the numerical integration of equation (3) is impractical. However, using 
the transformation 

we find that the function f@(r) satisfies the differential equation 

dfu V ( y >  
- = - -(1-cos2fu)+pcos2fu 
dr 2P 

with the boundary condition f,(O) = 0. At an energy of a bound state 

f U ( 4  ,,, (n +&-. (6) 

We note that the transformation (4) is very similar to the one used for positive 
energies (i.e. y(r )  = K cot ( S ( Y ) + K Y ) ,  where 6( co) is the phase shift) to obtain the 
phase equation (Calogero 1967, Kermode and Sprung 1969). 

The  solution of equation (2) for arbitrary p has the asymptotic form 

u(r) r * R  N a(p) eU'+ b(p)  e-@' ( 7 )  

where a(p) and b(p)  are related to the potential V(Y),  so that 
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If p r  $ 1 and p # pB, then 

N arctan (1) = (n+$)r .  f4* E. f i r s  1 

For zero energy, the asymptotic form of the wavefunction is 

Hence, 
U ( Y )  N a , ~  + bo. 

f,(~) ci lim arctan{p,-l(a,r + bo)} 
r g R  U-0 

(9) 

The  case a, = 0 corresponds to a bound state at zero energy. Equations (5), (6), (9) 
and (10) are very useful for the determination of a binding energy and we now illu- 
strate the method with the application to the Yukawa potential 

e - 0.34r 

Y 
V(Y) = - 1.5186- fm-2.  (11) 

(There is nothing extraordinary about this particular potential; it arose from a study 
of potentials having a small scattering length.) The  differential equation (5) was 
integrated out to 20 fm for various values of p. It was found that f, (20) = g(p) is a 
continuous function of p (the solution of equation (3) is not) with, for example, 
g(E) = r (for E very small), g(O.1) = 3.928 (E:,) and g(0.2) = 0.7859 ( ~ 6 . r ) .  
Immediately, we have that 0.1 < pB < 0.2. Further calculations gave 
g(0-19981) = 3.897 and g(0-19982) = 0.7941 and eventually pB = 0.1998122. In  
view of the large number of decimal places, the step length was halved from 0.01 to 
0.005. The result was not affected. 

Next, the depth of the potential (10) was increased. It was found that, in the 
limit, g(0) = nn-, where n is the number of bound states (apart from the case of a 
bound state at zero energy). This is related to Levinson’s theorem. I t  was also found 
that g(p) 2: (n  + $)r for p small but greater than 0.05 and g(pB) 1: (n + $)r at the nth 
excited state. 

Hence, this method gives a fast and accurate numerical calculation of the number 
and values of the S-state energy eigenvalues for a given local potential. The  extension 
of the method to higher angular momentum states is at present being considered. 
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